Contents

The Ropeblock view & approach on hook standard EN 13001:3-5

- Ropeblock general information
- Reasons to change
- Creation of a new standard
- Optimization
- Validation
- Results
ROPEBLOCK

Components for hoisting and lifting industry
- Smart engineering
- Efficient manufacturing

100 EMPLOYEES

5,000 BLOCKS PRODUCED EVERY YEAR

TENS OF THOUSANDS SOCKETS & SHEAVES PRODUCED EVERY YEAR
State of the art?

Design of hook blocks and hook should be state-of-the-art; according latest standards.

For Ramshorn hooks: DIN 15402.
- Established 40—50 years ago.
Reasons to change

Problem with the old DIN standard and hook choice; fatigue
- Hook size was chosen typically based on Mechanism class (operation hours), not based on actual stress cycles.
Reasons to change

Old standard DIN 15402

Problem with the old DIN hook; the shape
- Sharp edge
 - Damage to the hook and hardware
 - Based on the radius a de-rating of sling capacity is required (IMCA 179)
- Shape of the hook was ‘fixed’ in the standard. Difficult to deviate.
Creation of a new standard

Old crane standards (± 40-50 years ago)
- FEM and national standards (DIN, BS, NEN, NBN, etc.)

CEN TC 147; EN 13001 (± 10 years ago)

CEN TC 147; EN 13001:3-5 (2016)
- Pull back of DIN 15400 and implementation of new hook standard *(However: DIN 15402 as a informative annex)*

- Based on actual ‘picks’
- Design approach for hooks in new standard relatively free
 → possibility to optimize the hook shape.
Optimization

Improvement of hook shape:
- Take the sharp edge off
- How much?
 - Grommets, slings
 - Wire rope, fiber
 - Existing hardware
 - Theory

A combination of inputs lead to the optimized curvature and size.

The Ropeblock version of the EN 13001:3-5 hook → bending radius double in size.
Optimization

De-rating formula IMCA 179 \(E = 1 - 0,5/\sqrt{D/d} \)

\(d = \) rope diameter
\(D = 2 \times r \)

Hook No. 16 (typically around 50 ton)

DIN 15401 \(R = 14 \)
\(\rightarrow \) Red. 59%

Ropeblock EN 13001:3-5 \(R = 28 \)
\(\rightarrow \) Red. 42%
Validation by testing

Scope:

- Wire rope grommet
- Polyester round sling (WLL 20t; MBL 140t)
- Endless (rope) sling
- Endless (round) sling

300t testbed
Hook size 16
(Typ. SWL 40-63t, MBL 320t)
Results

Wire rope grommet (1960 grade, ø39mm, 6x36WS IWRC round sling)

- **WLL 25,5 x 2 = 51t* (@ f:1)**
- **CGBL (Imca) → 122,7x2 = 245t*E**

IMCA 179 → E = 1 - 0,5/V((2*r)/d) →

- Hook radius $R = 14$ mm/wire rope ø 39 mm → 41%
 (59% red.) → $2r < d$
- Hook radius $R = 28$ mm/wire rope ø 39 mm → 58%
 (42% red.) → $2r > d$

<table>
<thead>
<tr>
<th>DIN 15402 / new EN 13001:3-5</th>
<th>Ropeblock optimized EN 13001:3-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1836kN</td>
<td>2168kN</td>
</tr>
</tbody>
</table>

18% improvement
Results

• Polyester round sling (with jacket)
 WLL 20t x 2 = 40t*
 FoS 7:1 → MBL 140t x 2 = 280t*
 (*theoretical)

<table>
<thead>
<tr>
<th>DIN 15402 / new EN 13001:3-5</th>
<th>Ropeblock optimized EN 13001:3-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1679kN</td>
<td>2070kN**</td>
</tr>
</tbody>
</table>

- 23% improvement
** Broke in basket

*E = ?
Results

Dyneema®

Endless (round) sling construction made with Dyneema® (SK78)

Smaller slings, MBL 742kN & 1037kN

Basket hitch (2x): MBL 151t & 211t (theoretical)

<table>
<thead>
<tr>
<th>DIN 15402 / new EN 13001:3-5</th>
<th>Ropeblock optimized EN 13001:3-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1207kN (123 t)</td>
<td>1507kN (154t)</td>
</tr>
<tr>
<td>1834kN (187 t)</td>
<td>2372kN (242t)</td>
</tr>
</tbody>
</table>

- 30% improvement
- No reduction required on Ropeblock hook design
Results

Dyneema®

Wire Rope Bending Radius

Standard Shape

Optimized Shape
Results

Endless (rope) sling construction made with 12x1 braided rope made with Dyneema® (SK78)

<table>
<thead>
<tr>
<th>Rope size (MBL/MBF)</th>
<th>DIN 15402 / new EN 13001:3-5</th>
<th>Ropeblock optimized EN 13001:3-5</th>
<th>Improvement rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>21mm (1122kN)</td>
<td>890kN</td>
<td>1058kN</td>
<td>19%</td>
</tr>
<tr>
<td>24mm (1599kN)</td>
<td>1133kN</td>
<td>1286kN</td>
<td>14%</td>
</tr>
<tr>
<td>28mm (2103kN)</td>
<td>1184kN</td>
<td>1403kN</td>
<td>18%</td>
</tr>
<tr>
<td>32mm (2661kN)</td>
<td>1106kN</td>
<td>1427kN</td>
<td>29%</td>
</tr>
<tr>
<td>40mm (3942kN)</td>
<td>1627kN</td>
<td>2387kN</td>
<td>47%</td>
</tr>
</tbody>
</table>

*) Calc MBL = Rope MBL * 1,5 * 2 for basket hitch (theoretical, for D/d > 3)
For D/d < 3 → E to be taken into account:
- For e.g.: Hook No. 16 – rope ø 40 mm
DIN 15402 / EN 13001:3-5 → E = 0,51
Ropeblock EN 13001:3-5 → E = 0,73

E : ISO 18264 → 1 < D/d < 3
E = 1 – (0.5 / √(D/d)) * 1.27
• Endless (rope) sling construction made with 12x1 braided rope made with Dyneema® (SK78)

% improvement DIN 15402/EN 13001:3-5 versus Ropeblock design EN13001:3-5

DIN/EN : $D < d$
Results

Safe lifting is more than the gear only!

• The current IMCA 179 efficiency model may be considered conservative for wire rope slings
• ISO 18264 seems to be too optimistic for HMPE rope.
• Amend the ISO derating formula?
Results

Ropeblock hook: According EN 13001:3-5, but with improved shape.

- returns better efficiency
- allows smaller slings (check hardware curvature)
- increases wear performance & durability of slings
- saves costs
- increases safety

A number of gain.....: typ. 20-30%

Answered a long time market desire.
THANK YOU FOR YOUR ATTENTION

Special thanks to DSM Dyneema for their support and testing materials.

Disclaimer

All information, data, recommendations, etc. relating RopeBlock products and products made with Dyneema (the Information) is supported by research. RopeBlock assumes no liability arising from (i) the application, processing or use made of the Information or products; (ii) infringement of the intellectual or industrial property rights of third parties by reason of the application, processing or use of the Information or products by the buyer. Buyer shall (i) assume such liability; and (ii) verify the Information and the products.

Dyneema®, and Dyneema®, the world’s strongest fiber™ are trademarks of DSM. Use of these trademarks is prohibited unless strictly authorized.